Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
2.
J Liver Transpl ; 10: 100154, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38013675

RESUMEN

A 66-year-old male with end-stage liver disease (ESLD) secondary to non-alcoholic fatty liver disease (NAFLD), complicated by hepatocellular carcinoma (HCC), underwent deceased donor liver transplantation from a Coronavirus disease 2019 (COVID-19) positive donor. He presented a month later with fever, diarrhea and pancytopenia which led to hospitalization. The hospital course was notable for respiratory failure, attributed to invasive aspergillosis, as well as a diffuse rash. A bone marrow biopsy revealed hypocellular marrow without specific findings. In the following days, laboratory parameters raised concern for secondary hemophagocytic lymphohistiocytosis (HLH). Clinical concern also grew for solid organ transplant graft-versus-host-disease (SOT-GVHD) based on repeat marrow biopsy with elevated donor-derived CD3+ T cells on chimerism. After, a multidisciplinary discussion, the patient was started on ruxolitinib, in addition to high dose steroids, to address both SOT-GVHD and secondary HLH. Patient developed symptoms concerning for hemorrhagic stroke and was transitioned to comfort care. Although GVHD has been studied extensively in hematopoietic stem cell transplant (HSCT) patients, it is a rare entity in SOT with a lack of guidelines for management. Additionally, whether COVID-19 may play a role in development of SOT-GVDH has not been explored.

3.
Sci Rep ; 12(1): 2297, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145150

RESUMEN

In high-yielding dairy cows, the rapidly increasing milk production after parturition can result in a negative nutrient balance, since feed intake is insufficient to cover the needs for lactation. Mobilizing body reserves, mainly adipose tissue (AT), might affect steroid metabolism. We hypothesized, that cows differing in the extent of periparturient lipomobilization, will have divergent steroid profiles measured in serum and subcutaneous (sc)AT by a targeted metabolomics approach and steroidogenic enzyme profiles in scAT and liver. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to a high (HBCS) or normal body condition (NBCS) group fed differently until week 7 antepartum to either increase (HBCS BCS: 3.8 ± 0.1 and BFT: 2.0 ± 0.1 cm; mean ± SEM) or maintain BCS (NBCS BCS: 3.0 ± 0.1 and BFT: 0.9 ± 0.1 cm). Blood samples, liver, and scAT biopsies were collected at week -7, 1, 3, and 12 relative to parturition. Greater serum concentrations of progesterone, androsterone, and aldosterone in HBCS compared to NBCS cows after parturition, might be attributed to the increased mobilization of AT. Greater glucocorticoid concentrations in scAT after parturition in NBCS cows might either influence local lipogenesis by differentiation of preadipocytes into mature adipocytes and/or inflammatory response.


Asunto(s)
Tejido Adiposo/metabolismo , Aldosterona/genética , Aldosterona/metabolismo , Androsterona/genética , Androsterona/metabolismo , Bovinos/metabolismo , Industria Lechera , Metabolómica , Periodo Periparto/sangre , Periodo Periparto/metabolismo , Progesterona/genética , Progesterona/metabolismo , ARN Mensajero/sangre , ARN Mensajero/metabolismo , Adipocitos/fisiología , Aldosterona/sangre , Androsterona/sangre , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Diferenciación Celular , Ingestión de Alimentos/fisiología , Femenino , Glucocorticoides/metabolismo , Lactancia , Lipogénesis , Progesterona/sangre
4.
J Dairy Sci ; 104(4): 5095-5109, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33663821

RESUMEN

In the dairy cow, late gestation and early lactation are characterized by a complexity of metabolic processes required for the homeorhetic adaptation to the needs of fetal growth and milk production. Skeletal muscle plays an important role in this adaptation. The objective of this study was to characterize the metabolome in skeletal muscle (semitendinosus muscle) and in serum of dairy cows in the context of the physiological changes occurring in early lactation and to test the effects of dietary supplementation (from d 1 in milk onwards) with conjugated linoleic acids (sCLA; 100 g/d; supplying 7.6 g of cis-9,trans-11 CLA and 7.6 g of trans-10,cis-12 CLA per cow/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). The metabolome was characterized in skeletal muscle samples collected on d 21 and 70 after calving in conjunction with their serum counterpart using a targeted metabolomics approach (AbsoluteIDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria). Thereby 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses) were quantified in both sample types. In both groups, dry matter intake increased after calving. It was lower in sCLA than in CTR on d 21, which resulted in reduced calculated net energy and metabolizable protein balances. On d 21, the concentrations of dopamine, Ala, and hexoses in the skeletal muscle were higher in sCLA than in CTR. On d 21, the changed metabolites in serum were mainly long-chain (>C24) diacyl phosphatidylcholine PC (PC-aa) and acyl-alkyl phosphatidylcholine (PC-ae), along with lysophosphatidylcholine acyl (lysoPC-a) C26:1 that were all lower in sCLA than in CTR. Supplementation with CLA affected the muscle concentrations of 22 metabolites on d 70 including 10 long-chain (>C22) sphingomyelin (SM), hydroxysphingomyelin [SM(OH)], PC-aa, and PC-ae along with 9 long-chain (>C16) lysoPC-a and 3 metabolites related to amino acids (spermine, citrulline, and Asp). On d 70, the concentrations of lysoPC-a C18:2 and C26:0 in serum were higher in the sCLA cows than in the CTR cows. Regardless of treatment, the concentrations of Ile, Leu, Phe, Lys, His, Met, Trp, and hydroxybutyrylcarnitine (C4-OH) decreased, whereas those of ornithine, Gln, and trans-4-hydroxyproline (t4-OH-Pro) increased from d 21 to 70 in muscle. The significantly changed metabolites in serum with time of lactation were 28 long-chain (>C30) PC-ae and PC-aa, 7 long-chain (>C16) SM and SM(OH), along with lysoPC-a C20:3 that were all increased. In conclusion, in addition to other significantly changed metabolites, CLA supplementation mainly led to changes in muscle and serum concentrations of glycerophospholipids and sphingolipids that might reflect the phospholipid compositional changes in muscle. The metabolome changes observed in sCLA on d 21 seem to be, at least in part, due to the lower DMI in these cows. The changes in the muscle concentrations of AA from d 21 to 70, which coincided with the steady energy and MP balances, might reflect a shift of protein synthesis/degradation balance toward synthesis.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Austria , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Metaboloma , Leche , Músculo Esquelético/metabolismo , Embarazo
5.
J Dairy Sci ; 103(4): 3730-3744, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32008771

RESUMEN

The transition from late gestation to early lactation is associated with extensive changes in metabolic, endocrine, and immune functions in dairy cows. Skeletal muscle plays an important role in maintaining the homeorhetic adaptation to the metabolic needs of lactation. The objective of this study was to characterize the skeletal muscle metabolome in the context of the metabolic changes that occur during the transition period in dairy cows with high (HBCS) versus normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 1 of 2 groups, which were fed differently to reach the targeted BCS and back fat thickness (BFT) until dry-off at -49 d before calving (HBCS: >3.75 and >1.4 cm; NBCS: <3.5 and <1.2 cm). During the dry period and the subsequent lactation, both groups were fed identical diets. The differences in both BCS and BFT were maintained throughout the study. The metabolome was characterized in skeletal muscle samples (semitendinosus muscle) collected on d -49, 3, 21, and 84 relative to calving using a targeted metabolomics approach (AbsoluteIDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria), which allowed for the quantification of up to 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). On d -49, the concentrations of citrulline and hydroxytetradecadienyl-l-carnitine in muscle were higher in HBCS cows than in NBCS cows, but those of carnosine were lower. Over-conditioning did not affect the muscle concentrations of any of the metabolites on d 3. On d 21, the concentrations of phenylethylamine and linoleylcarnitine in muscle were lower in HBCS cows than in NBCS cows, and the opposite was true for lysophosphatidylcholine acyl C20:4. On d 84, the significantly changed metabolites were mainly long-chain (>C32) acyl-alkyl phosphatidylcholine and di-acyl phosphatidylcholine, along with 3 long-chain (>C16) sphingomyelin that were all lower in HBCS cows than in NBCS cows. These data contribute to a better understanding of the metabolic adaptation in skeletal muscle of dairy cows during the transition period, although the physiological significance and underlying molecular mechanisms responsible for the regulation of citrulline, hydroxytetradecadienyl-l-carnitine, carnosine, and phenylethylamine associated with over-conditioning are still elusive and warrant further investigation. The changes observed in muscle lysophosphatidylcholine and phosphatidylcholine concentrations may point to an alteration in phosphatidylcholine metabolism, probably resulting in an increase in membrane stiffness, which may lead to abnormalities in insulin signaling in the muscle of over-conditioned cows.


Asunto(s)
Lactancia/fisiología , Metaboloma , Músculo Esquelético/metabolismo , Periodo Posparto/metabolismo , Animales , Bovinos , Dieta/veterinaria , Metabolismo Energético/fisiología , Femenino , Insulina/metabolismo , Metabolismo de los Lípidos , Embarazo
6.
J Dairy Sci ; 103(3): 2829-2846, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31954574

RESUMEN

The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and ß (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos/análisis , Ácidos Linoleicos Conjugados/administración & dosificación , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Animales , Bovinos/genética , Femenino , Insulina/sangre , Lactancia/efectos de los fármacos , Metilhistidinas/análisis , Leche/metabolismo , Músculo Esquelético/metabolismo , Parto , Periodo Posparto , Embarazo , ARN Mensajero/genética , Ubiquitina/metabolismo
8.
J Dairy Sci ; 102(12): 11544-11560, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31587900

RESUMEN

The objective of the current study was to investigate the effects of overconditioning around calving on gene expression of key components of the mammalian target of rapamycin (mTOR) pathway and ubiquitin-proteasome system (UPS) in skeletal muscle as well as the AA profiles in both serum and muscle of periparturient cows. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition group (HBCS; n = 19) or a normal body condition group (NBCS; n = 19) and were fed different diets until dry-off (d -49 relative to calving) to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg). At dry-off, the NBCS cows (parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 ± 1.67; body weight: 720 ± 57 kg) had a BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. Blood samples and skeletal muscle biopsies (semitendinosus) were repeatedly (d -49, +3, +21, and +84 relative to calving) collected for assessing the concentrations of free AA and the mRNA abundance of various components of mTOR and UPS. The differences in BCS and BFT were maintained throughout the study. The circulating concentrations of most AA with the exception of Gly, Gln, Met, and Phe increased in early lactation in both groups. The serum concentrations of Ala (d +21 and +84) and Orn (d +84) were lower in HBCS cows than in NBCS cows, but those of Gly, His, Leu, Val, Lys, Met, and Orn on d -49 and Ile on d +21 were greater in HBCS cows than in NBCS cows. The serum concentrations of 3-methylhistidine, creatinine, and 3-methylhistidine:creatinine ratio increased after calving (d +3) but did not differ between the groups. The muscle concentrations of all AA (except for Cys) remained unchanged over time and did not differ between groups. The muscle concentrations of Cys were greater on d -49 but tended to be lower on d +21 in HBCS cows than in NBCS cows. On d +21, mTOR and eukaryotic translation initiation factor 4E binding protein 1 mRNA abundance was greater in HBCS cows than in NBCS cows, whereas ribosomal protein S6 kinase 1 was not different between the groups. The mRNA abundance of ubiquitin-activating enzyme 1 (d +21), ubiquitin-conjugating enzyme 1 (d +21), atrogin-1 (d +21), and ring finger protein-1 (d +3) enzymes was greater in HBCS cows than in NBCS cows, whereas ubiquitin-conjugating enzyme 2 was not different between the groups. The increased mRNA abundance of key components of mTOR signaling and of muscle-specific ligases of HBCS cows may indicate a simultaneous activation of anabolic and catabolic processes and thus increased muscle protein turnover, likely as a part of the adaptive response to prevent excessive loss of skeletal muscle mass during early lactation.


Asunto(s)
Bovinos/metabolismo , Expresión Génica , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Animales , Peso Corporal , Dieta/veterinaria , Metabolismo Energético , Femenino , Lactancia , Metilhistidinas/sangre , Leche , Embarazo , Transducción de Señal
9.
J Dairy Sci ; 102(7): 6571-6586, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31056318

RESUMEN

Biogenic amines (BA) are a class of nitrogenous compounds that are involved in a wide variety of physiological processes, but their role in transition cows is poorly understood. Our objectives were to describe the longitudinal changes of BA in serum and in skeletal muscle during the transition period and to characterize temporal responses of BA in relation to body condition score (BCS) of periparturient dairy cows. Fifteen weeks before calving, 36 multiparous Holstein cows were assigned to 2 groups (n = 18 per group) that were fed differently to reach either high [HBCS; net energy for lactation (NEL) = 7.2 MJ/kg of dry matter (DM)] or normal BCS (NBCS; NEL = 6.8 MJ/kg of DM) at dry-off. The targeted BCS and back fat thickness (BFT) at dry-off (HBCS, >3.75 and >1.4 cm; NBCS, <3.5 and <1.2 cm) were reached. Thereafter, both groups were fed identical diets. Blood samples and muscle (semitendinosus) biopsies were collected at d -49, +3, +21, and +84 relative to parturition. In serum and skeletal muscle, BA concentrations were measured using a targeted metabolomics assay. The data were analyzed as a repeated measure using the MIXED procedure of SAS. The serum concentrations of most BA (i.e., creatinine, taurine, carnosine putrescine, spermine, α-aminoadipic acid, acetylornithine, kynurenine, serotonin, hydroxyproline, asymmetric dimethylarginine, and symmetric dimethylarginine) fluctuated during the transition period, while others (i.e., spermidine, phenylethylamine) did not change with time. The muscle concentrations of BA remained unchanged over time. Creatinine had the highest concentrations in the serum, while carnosine had the highest concentration among the muscle BA. The serum concentrations of creatinine (d +21), putrescine (d +84), α-aminoadipic acid (d +3), and hydroxyproline (d +21) were or tended to be higher for HBCS compared with NBCS postpartum. The serum concentrations of symmetric dimethylarginine (d -49) and acetylornithine (d +84) were or tended to be lower for HBCS compared with NBCS, respectively. The serum kynurenine/tryptophan ratio was greater with HBCS than with NBCS (d +84). Compared with NBCS, HBCS was associated with lower muscle concentrations of carnosine, but those of hydroxyproline were higher (d -49). In both serum and muscle, the asymmetric dimethylarginine concentrations were greater with HBCS than with NBCS (d -49). No correlation was found between serum and skeletal muscle BA. This study indicates that overconditioning of dairy cows may influence serum and muscle BA concentrations in the periparturient period.


Asunto(s)
Aminas Biogénicas/sangre , Bovinos/fisiología , Músculo Esquelético/química , Animales , Aminas Biogénicas/metabolismo , Lactancia Materna , Bovinos/sangre , Dieta/veterinaria , Metabolismo Energético/fisiología , Femenino , Lactancia/fisiología , Hígado/metabolismo , Leche/metabolismo , Músculo Esquelético/metabolismo , Parto , Periodo Posparto/metabolismo , Embarazo
10.
J Dent Res ; 98(6): 642-651, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026179

RESUMEN

Periodontitis is one of the most prevalent oral diseases worldwide and is caused by multifactorial interactions between host and oral bacteria. Altered cellular metabolism of host and microbes releases a number of intermediary end products known as metabolites. There is an increasing interest in identifying metabolites from oral fluids such as saliva to widen the understanding of the complex pathogenesis of periodontitis. It is believed that some metabolites might serve as indicators toward early detection and screening of periodontitis and perhaps even for monitoring its prognosis in the future. Because contemporary periodontal screening methods are deficient, there is an urgent need for novel approaches in periodontal screening procedures. To this end, we associated oral parameters (clinical attachment level, periodontal probing depth, supragingival plaque, supragingival calculus, number of missing teeth, and removable denture) with a large set of salivary metabolites ( n = 284) obtained by mass spectrometry among a subsample ( n = 909) of nondiabetic participants from the Study of Health in Pomerania (SHIP-Trend-0). Linear regression analyses were performed in age-stratified groups and adjusted for potential confounders. A multifaceted image of associated metabolites ( n = 107) was revealed with considerable differences according to age groups. In the young (20 to 39 y) and middle-aged (40 to 59 y) groups, metabolites were predominantly associated with periodontal variables, whereas among the older subjects (≥60 y), tooth loss was strongly associated with metabolite levels. Metabolites associated with periodontal variables were clearly linked to tissue destruction, host defense mechanisms, and bacterial metabolism. Across all age groups, the bacterial metabolite phenylacetate was significantly associated with periodontal variables. Our results revealed alterations of the salivary metabolome in association with age and oral health status. Among our comprehensive panel of metabolites, periodontitis was significantly associated with the bacterial metabolite phenylacetate, a promising substance for further biomarker research.


Asunto(s)
Metaboloma , Salud Bucal , Periodontitis/microbiología , Saliva/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Bacterias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pérdida de la Inserción Periodontal , Pérdida de Diente , Adulto Joven
11.
J Dairy Sci ; 102(1): 754-767, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343917

RESUMEN

Acylcarnitines (ACC) are formed when fatty acid (FA)-coenzyme A enters the mitochondria for ß-oxidation and the tricarboxylic acid cycle through the carnitine shuttle. Concentrations of ACC may vary depending on the metabolic conditions, but can accumulate when rates of ß-oxidation exceed those of tricarboxylic acid. This study aimed to characterize muscle and blood serum acylcarnitine profiles, to determine the mRNA abundance of muscle carnitine acyltransferases, and to test whether dietary supplementation (from d 1 in milk) with conjugated linoleic acids (CLA; 100 g/d; each 12% of trans-10,cis-12 and cis-9,trans-11 CLA; n = 11) altered these compared with control fat-supplemented cows (CTR; n = 10). Blood samples and biopsies from the semitendinosus musclewere collected on d -21, 1, 21, and 70 relative to parturition. Serum and muscle ACC profiles were quantified using a targeted metabolomics approach. The CLA supplement did not affect the variables examined. The serum concentration of free carnitine decreased with the onset of lactation. The concentrations of acetylcarnitine, hydroxybutyrylcarnitine, and the sum of short-chain ACC in serum were greater from d -21 to 21 than thereafter. The serum concentrations of long-chain ACC tetradecenoylcarnitine (C14:1) and octadecenoylcarnitine (C18:1) concentrations were greater on d 1 and 21 compared with d -21. Muscle carnitine remained unchanged, whereas short- and medium-chain ACC, including propenoylcarnitine (C3:1), hydroxybutyrylcarnitine, hydroxyhexanoylcarnitine, hexenoylcarnitine (C6:1), and pimelylcarnitine were increased on d 21 compared with d -21 and decreased thereafter. In muscle, the concentrations of long-chain ACC (from C14 to C18) were elevated on d 1. The mRNA abundance of carnitine palmitoyltransferase 1, muscle isoform (CPT1B) increased 2.8-fold from d -21 to 1, followed by a decline to nearly prepartum values by d 70, whereas that of CPT2 did not change over time. The majority of serum and muscle short- and long-chain ACC were positively correlated with the FA concentrations in serum, whereas serum carnitine and C5 were negatively correlated with FA. Time-related changes in the serum and muscle ACC profiles were demonstrated that were not affected by the CLA supplement at the dosage used in the present study. The elevated concentrations of long-chain ACC species in muscle and of serum acetylcarnitine around parturition point to incomplete FA oxidation were likely due to insufficient metabolic adaptation in response to the load of FA around parturition.


Asunto(s)
Carnitina/análogos & derivados , Bovinos/fisiología , Ácidos Grasos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Músculo Esquelético/metabolismo , Animales , Carnitina/sangre , Bovinos/sangre , Suplementos Dietéticos/análisis , Femenino , Lactancia , Leche/metabolismo , Músculo Esquelético/química , Parto , Embarazo
12.
Gigascience ; 7(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496450

RESUMEN

Background: Genome-wide association studies have identified hundreds of loci that influence a wide variety of complex human traits; however, little is known regarding the biological mechanism of action of these loci. The recent accumulation of functional genomics ("omics"), including metabolomics data, has created new opportunities for studying the functional role of specific changes in the genome. Functional genomic data are characterized by their high dimensionality, the presence of (strong) statistical dependency between traits, and, potentially, complex genetic control. Therefore, the analysis of such data requires specific statistical genetics methods. Results: To facilitate our understanding of the genetic control of omics phenotypes, we propose a trait-centered, network-based conditional genetic association (cGAS) approach for identifying the direct effects of genetic variants on omics-based traits. For each trait of interest, we selected from a biological network a set of other traits to be used as covariates in the cGAS. The network can be reconstructed either from biological pathway databases (a mechanistic approach) or directly from the data, using a Gaussian graphical model applied to the metabolome (a data-driven approach). We derived mathematical expressions that allow comparison of the power of univariate analyses with conditional genetic association analyses. We then tested our approach using data from a population-based Cooperative Health Research in the region of Augsburg (KORA) study (n = 1,784 subjects, 1.7 million single-nucleotide polymorphisms) with measured data for 151 metabolites. Conclusions: We found that compared to single-trait analysis, performing a genetic association analysis that includes biologically relevant covariates can either gain or lose power, depending on specific pleiotropic scenarios, for which we provide empirical examples. In the context of analyzed metabolomics data, the mechanistic network approach had more power compared to the data-driven approach. Nevertheless, we believe that our analysis shows that neither a prior-knowledge-only approach nor a phenotypic-data-only approach is optimal, and we discuss possibilities for improvement.


Asunto(s)
Estudio de Asociación del Genoma Completo , Redes y Vías Metabólicas/genética , Metaboloma/genética , Metabolómica/métodos , Algoritmos , Sitios Genéticos , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
13.
Sci Rep ; 8(1): 12262, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30116002

RESUMEN

Although the impact of dietary patterns on human serum metabolites has been examined, the fasting effect on the metabolic profile has not yet been considered. The aim of this cross-sectional study is to investigate the influence of fasting regarding the association between dietary patterns, reflected by macro- and micronutrient intake, and human serum metabolites in a population-based cohort. A total 1197 non-diabetic German adults aged 45 to 83 years, who participated in baseline of the CARLA study 2002-2006 and had metabolite quantification were selected for this study. Macro- and micronutrient intakes were estimated from a food frequency questionnaire (FFQ). Concentrations of 134 serum metabolites were measured by targeted metabolomics AbsoluteIDQ p150 Kit. The association of dietary patterns with serum metabolites was calculated by means of linear regression and the influence of the fasting status was considered by including interaction terms with each macro- and micronutrient. Higher self-reported intake of alcohol and lower self-reported intake of organic acids were associated with higher concentrations of acylcarnitines and phosphatidylcholines. Mainly the associations between dietary patterns and acylcarnitines and hexose were altered after including interaction terms, suggesting effect modification by fasting status. No effect from fasting time was seen for amino acids and saturated, mono- and polyunsaturated phosphatidylcholines.


Asunto(s)
Ingestión de Energía/efectos de los fármacos , Ayuno/metabolismo , Metabolómica , Micronutrientes/farmacología , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodo Posprandial/efectos de los fármacos , Encuestas y Cuestionarios , Factores de Tiempo
14.
Sci Rep ; 8(1): 9810, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955084

RESUMEN

Disruption of metabolic homeostasis is an important factor in many diseases. Various metabolites have been linked to higher risk of morbidity and all-cause mortality using metabolomics in large population-based cohorts. In these studies, baseline metabolite levels were compared across subjects to identify associations with health outcomes, implying the existence of 'healthy' concentration ranges that are equally applicable to all individuals. Here, we focused on intra-individual changes in metabolite levels over time and their link to mortality, potentially allowing more personalized risk assessment. We analysed targeted metabolomics data for 134 blood metabolites from 1409 participants in the population-based CARLA cohort at baseline and after four years. Metabotypes of the majority of participants (59%) were extremely stable over time indicated by high correlation between the subjects' metabolite profiles at the two time points. Metabotype instability and, in particular, decrease of valine were associated with higher risk of all-cause mortality in 7.9 years of follow-up (hazard ratio (HR) = 1.5(95%CI = 1.0-2.3) and 0.2(95%CI = 0.1-0.3)) after multifactorial adjustment. Excluding deaths that occurred in the first year after metabolite profiling showed similar results (HR = 1.8(95%CI = 1.1-2.8)). Lower metabotype stability was also associated with incident cardiovascular disease (OR = 1.2(95%CI = 1.0-1.3)). Therefore, changes in the personal metabotype might be a valuable indicator of pre-clinical disease.


Asunto(s)
Metabolómica , Mortalidad , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/mortalidad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Metaboloma , Persona de Mediana Edad , Morbilidad , Oportunidad Relativa , Factores de Riesgo
15.
Crit Rev Clin Lab Sci ; 55(1): 21-32, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29239245

RESUMEN

Presently, routine screening misses many cases of prediabetes and early type 2 diabetes (T2D). Therefore, better biomarkers are needed for a simple and early detection of abnormalities of glucose metabolism and prediction of future T2D. Possible candidates for this include plasma or serum amino acids because glucose and amino acid metabolism are closely connected. This review presents the available evidence of this connectivity and discusses its clinical implications. First, we examine the underlying physiological, pre-analytical, and analytical issues. Then, we summarize results of human studies that evaluate amino acid levels as markers for insulin resistance, prediabetes, and future incident T2D. Finally, we illustrate the interconnection of amino acid levels and metabolic syndrome with our own data from a deeply phenotyped human cohort. We also discuss how amino acids may contribute to the pathophysiology of T2D. We conclude that elevated branched-chain amino acids and reduced glycine are currently the most robust and consistent amino acid markers for prediabetes, insulin resistance, and future T2D. Yet, we are cautious regarding the clinical potential even of these parameters because their discriminatory power is insufficient and their levels depend not only on glycemia, but also on other components of the metabolic syndrome. The identification of more precise intermediates of amino acid metabolism or combinations with other biomarkers will, therefore, be necessary to obtain in order to develop laboratory tests that can improve T2D screening.


Asunto(s)
Aminoácidos , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina/fisiología , Metaboloma/fisiología , Estado Prediabético , Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Metabolómica , Estado Prediabético/sangre , Estado Prediabético/diagnóstico , Estado Prediabético/metabolismo
16.
Eur J Clin Nutr ; 71(8): 995-1001, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28378853

RESUMEN

BACKGROUND/OBJECTIVES: Fatty liver disease (FLD) is an important intermediate trait along the cardiometabolic disease spectrum and strongly associates with type 2 diabetes. Knowledge of biological pathways implicated in FLD is limited. An untargeted metabolomic approach might unravel novel pathways related to FLD. SUBJECTS/METHODS: In a population-based sample (n=555) from Northern Germany, liver fat content was quantified as liver signal intensity using magnetic resonance imaging. Serum metabolites were determined using a non-targeted approach. Partial least squares regression was applied to derive a metabolomic score, explaining variation in serum metabolites and liver signal intensity. Associations of the metabolomic score with liver signal intensity and FLD were investigated in multivariable-adjusted robust linear and logistic regression models, respectively. Metabolites with a variable importance in the projection >1 were entered in in silico overrepresentation and pathway analyses. RESULTS: In univariate analysis, the metabolomics score explained 23.9% variation in liver signal intensity. A 1-unit increment in the metabolomic score was positively associated with FLD (n=219; odds ratio: 1.36; 95% confidence interval: 1.27-1.45) adjusting for age, sex, education, smoking and physical activity. A simplified score based on the 15 metabolites with highest variable importance in the projection statistic showed similar associations. Overrepresentation and pathway analyses highlighted branched-chain amino acids and derived gamma-glutamyl dipeptides as significant correlates of FLD. CONCLUSIONS: A serum metabolomic profile was associated with FLD and liver fat content. We identified a simplified metabolomics score, which should be evaluated in prospective studies.


Asunto(s)
Hígado Graso Alcohólico/sangre , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Anciano , Consumo de Bebidas Alcohólicas/efectos adversos , Bancos de Muestras Biológicas , Biomarcadores/sangre , Estudios de Cohortes , Biología Computacional , Estudios Transversales , Dipéptidos/sangre , Sistemas Especialistas , Hígado Graso Alcohólico/diagnóstico por imagen , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/fisiopatología , Femenino , Ácido Glutámico/análogos & derivados , Ácido Glutámico/sangre , Humanos , Hígado/diagnóstico por imagen , Hígado/fisiopatología , Imagen por Resonancia Magnética , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Autoinforme , Índice de Severidad de la Enfermedad
17.
Nutr Diabetes ; 6: e215, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27348203

RESUMEN

BACKGROUND/OBJECTIVES: The metabolic consequences of type of body shape need further exploration. Whereas accumulation of body mass in the abdominal area is a well-established metabolic risk factor, accumulation in the gluteofemoral area is controversially debated. We evaluated the associations of anthropometric markers of overall body mass and body shape with 127 serum metabolites within a sub-sample of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. SUBJECTS/METHODS: The cross-sectional analysis was conducted in 2270 participants, randomly drawn from the EPIC-Potsdam cohort. Metabolites were measured by targeted metabolomics. To select metabolites related with both waist circumference (WC) (abdominal subcutaneous and visceral fat) and hip circumference (HC) (gluteofemoral fat, muscles and bone structure) correlations (r) with body mass index (BMI) as aggregating marker of body mass (lean and fat mass) were calculated. Relations with body shape were assessed by median metabolite concentrations across tertiles of WC and HC, mutually adjusted to each other. RESULTS: Correlations revealed 23 metabolites related to BMI (r⩾I0.20 I). Metabolites showing relations with BMI were showing similar relations with HC adjusted WC (WCHC). In contrast, relations with WC adjusted HC (HCWC) were less concordant with relations of BMI and WCHC. In both sexes, metabolites with concordant relations regarding WCHC and HCWC included tyrosine, diacyl-phosphatidylcholine C38:3, C38:4, lyso-phosphatidylcholine C18:1, C18:2 and sphingomyelin C18:1; metabolites with opposite relations included isoleucine, diacyl-phosphatidylcholine C42:0, acyl-alkyl-phosphatidylcholine C34:3, C42:4, C42:5, C44:4 and C44:6. Metabolites specifically related to HCWC included acyl-alkyl-phosphatidylcholine C34:2, C36:2, C38:2 and C40:4, and were solely observed in men. Other metabolites were related to WCHC only. CONCLUSIONS: The study revealed specific metabolic profiles for HCWC as marker of gluteofemoral body mass differing from those for BMI and WCHC as markers of overall body mass and abdominal fat, respectively. Thus, the study suggests that gluteofemoral mass may have less-adverse metabolic implications than abdominal fat.


Asunto(s)
Antropometría , Biomarcadores/sangre , Metabolómica/métodos , Fenotipo , Adulto , Índice de Masa Corporal , Estudios Transversales , Femenino , Alemania , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Metaboloma , Persona de Mediana Edad , Circunferencia de la Cintura , Relación Cintura-Cadera
18.
Mol Metab ; 4(1): 39-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25685688

RESUMEN

OBJECTIVE: Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. METHODS: We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. RESULTS: Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. CONCLUSIONS: We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and during changes in hepatic insulin action in liver alter membrane properties - in particular those of mitochondria which are highly abundant in hepatocytes. In turn, a progressive decrease in the abundance of mitochondrial membrane proteins throughout HF-exposure likely impacts on mitochondrial energy metabolism, substrate exchange across mitochondrial membranes, contributes to oxidative stress, mitochondrial damage, and the development of insulin resistance in liver.

19.
J Endocrinol Invest ; 37(4): 369-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24682914

RESUMEN

BACKGROUND: Recently, five branched-chain and aromatic amino acids were shown to be associated with the risk of developing type 2 diabetes (T2D). AIM: We set out to examine whether amino acids are also associated with the development of hypertriglyceridemia. MATERIALS AND METHODS: We determined the serum amino acids concentrations of 1,125 individuals of the KORA S4 baseline study, for which follow-up data were available also at the KORA F4 7 years later. After exclusion for hypertriglyceridemia (defined as having a fasting triglyceride level above 1.70 mmol/L) and diabetes at baseline, 755 subjects remained for analyses. RESULTS: Increased levels of leucine, arginine, valine, proline, phenylalanine, isoleucine and lysine were significantly associated with an increased risk of hypertriglyceridemia. These associations remained significant when restricting to those individuals who did not develop T2D in the 7-year follow-up. The increase per standard deviation of amino acid level was between 26 and 40 %. CONCLUSIONS: Seven amino acids were associated with an increased risk of developing hypertriglyceridemia after 7 years. Further studies are necessary to elucidate the complex role of these amino acids in the pathogenesis of metabolic disorders.


Asunto(s)
Aminoácidos/sangre , Hipertrigliceridemia/sangre , Anciano , Arginina/sangre , Betaína/sangre , Índice de Masa Corporal , Ayuno , Femenino , Humanos , Isoleucina/sangre , Leucina/sangre , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Fenilalanina/sangre , Prolina/sangre , Curva ROC , Factores de Riesgo , Triglicéridos/sangre , Valina/sangre
20.
Allergy ; 69(5): 632-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24661001

RESUMEN

BACKGROUND: Type 2 immune responses directed by Th2 cells and characterized by the signature cytokines IL4, IL5, and IL13 play major pathogenic roles in atopic diseases. Single nucleotide polymorphisms in the human Th2 cytokine locus in particular in a locus control region within the DNA repair gene RAD50, containing several RAD50 DNase1-hypersensitive sites (RHS), have been robustly associated with atopic traits in genome-wide association studies (GWAS). Functional variants in IL13 have been intensely studied, whereas no causative variants for the IL13-independent RAD50 signal have been identified yet. This study aimed to characterize the functional impact of the atopy-associated polymorphism rs2240032 located in the human RHS7 on cis-regulatory activity and differential binding of transcription factors. METHODS: Differential transcription factor binding was analyzed by electrophoretic mobility shift assays (EMSAs) with Jurkat T-cell nuclear extracts. Identification of differentially binding factors was performed using mass spectrometry (LC-MS/MS). Reporter vector constructs carrying either the major or minor allele of rs2240032 were tested for regulating transcriptional activity in Jurkat and HeLa cells. RESULTS: The variant rs2240032 impacts transcriptional activity and allele-specific binding of SMAD3, SP1, and additional putative protein complex partners. We further demonstrate that rs2240032 is located in an RHS7 subunit which itself encompasses repressor activity and might be important for the fine-tuning of transcription regulation within this region. CONCLUSION: The human RHS7 critically contributes to the regulation of gene transcription, and the common atopy-associated polymorphism rs2240032 impacts transcriptional activity and transcription factor binding.


Asunto(s)
Citocinas/genética , Regulación de la Expresión Génica , Hipersensibilidad Inmediata/genética , Hipersensibilidad Inmediata/metabolismo , Región de Control de Posición , Proteína smad3/metabolismo , Factor de Transcripción Sp1/metabolismo , Células Th2/metabolismo , Transcripción Genética , Alelos , Sitios de Unión , Orden Génico , Humanos , Hipersensibilidad Inmediata/inmunología , Desequilibrio de Ligamiento , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...